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ABSTRACT: The free energy profile and the (classical) kinetics of chemical reactions in (soft) condensed phase are
modeled theoretically by means of molecular dynamics simulations, the Perturbed Matrix Method (PMM) and the
quasi Gaussian entropy (QGE) theory. In this paper we describe the theoretical framework and apply the model to the
intramolecular proton transfer reaction of aqueous malonaldehyde. Although in the present application we disregard
the quantum effects for the proton dynamics along the reaction coordinate (i.e., tunneling), the classical-like view of
the proton transition over the reaction free energy surface seems to properly describe the kinetic process and shows that
water acts lowering the reaction free energy barrier. Moreover, a weak temperature dependence of the free energy
surface is obtained, implying small entropy variations in the transition. Interestingly the activation entropy, as provided
by the QGE model, is negative in the whole temperature range considered, thus indicating an entropy reduction at the
transition structure. Finally, by comparing our results with theoretical and experimental literature data, we critically
address the actual role of tunneling in this reaction and discuss the emerging kinetic scheme. Copyright# 2006 John
Wiley & Sons, Ltd.
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INTRODUCTION

Cis malonaldehyde (1) is the simplest beta-dicarbonyl
compound which presents

the essential features to study the intramolecular hydrogen
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bond and proton transfer kinetics and dynamics according
to the reaction 1 reported in the following scheme.

In the above reaction the Cs structures la and lb
unimolecularly transform into each other through the
transition structure 1c (C2v symmetry), as obtained by the
vacuum minimum energy path defining the intrinsic
reaction coordinate (IRC).1

In the gas phase, reaction I has been extensively studied
and basically all the energetic2–5 and dynamical6–9

aspects have been clarified. The typical double well
potential profile of this reaction has been ascertained from
X-ray photoelectron10,11 infrared12–14 and microwave15

spectroscopy. Moreover, the kinetics of this reaction
has been also experimentally addressed in gas phase
by studying the splitting of vibrational levels16 and
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INTRAMOLECULAR PROTON TRANSFER IN AQUEOUS MALONALDEHYDE 519
estimating the energy barrier.17 Differently from the gas
phase, the knowledge on this reaction in solution is much
more limited. First of all, despite of the large number of
NMR experiments18–20 and quantum-chemical calcu-
lations5 with the Polarizable Continuum Model (PCM),21

the actual stability of cis malonaldehyde is not well
clarified, although the trans isomer should be the
predominant form in water.

Second, the involvement of the light proton in the
reaction may in principle provide relevant quantum
effects even in condensed phase.

All these complications did not prevent this reaction to be
used as a prototypical system for theoretical studies of
intramolecular proton transfer in condensed phase.22–26

Finally, and most importantly, the modeling of chemical
reactions in complex environment (solution) still represents
a challenge for theoretical-computational chemistry.27–30

In this respect the main aim of this work is to introduce
(and evaluate the reliability of) an alternative theoretical
approach providing a tool, complementary to existing
computational schemes, for addressing chemical reactions
in solution. As a matter of fact in this paper we evaluate the
reaction free energy surface of the reaction I in water, by
means of a theoreticalmodel based on statisticalmechanics
and the perturbed matrix method (PMM),31–37 as intro-
duced38 and applied39 in very recent papers. Moreover,
using the quasi Gaussian entropy (QGE) theory40 to model
the reaction free energy in temperature, we are able to
construct a complete theoretical description of the reaction
thermodynamics. Finally, evaluating the diffusion coeffi-
cient along the reaction coordinate we also obtain the
(classical) kinetics of the chemical process in solution and
hence, comparing our results with the available exper-
imental and theoretical literature data, we address the
problem of the role of tunneling in this reaction.
THEORY

In condensed phase multiple minimum energy reaction
paths are present and hence the definition of the reaction
coordinate is not as simple as in gas phase, where for rigid
or semi-rigid molecules a unique IRC can be usually
defined.41–44

In principle one might search for the minimum free
energy path in configurational space, that is, the
unidimensional curve such that at each position the free
energy obtained within the plane orthogonal to the curve is
the minimum possible. However such an evaluation, even
for a simple molecule like malonaldehyde, is virtually
impossible. Moreover, it must be noted that several
reaction coordinates are in principle possible to be used to
correctly describe the reaction kinetics, in particular for a
condensed phase system, which involves a huge number of
degrees of freedom. In fact, in order to define a proper
(single) reaction coordinate for describing the kinetics of
the chemical process and not only its thermodynamics, we
Copyright # 2006 John Wiley & Sons, Ltd.
need to use a classical degree of freedom such that all its
orthogonal coordinates are well equilibrated during its
relaxation.45 Hence, it is possible that according to the
initial conditions of the kinetic relaxation (i.e., the
coordinates/observables equilibrated at the beginning of
the process) and the exact definition of the reactant and
product states, different reaction coordinates should be
used. This clearly implies that a certain variation of the
reaction free energy profile is possible, as a consequence of
the different choice of the reaction coordinate and hence of
the orthogonal planes used to obtain the corresponding free
energy. In principle, each of these reaction coordinates, if
properly defined, should provide the correct (classical)
kinetic relaxation for the corresponding process. In the
present study we consider the IRC, evaluated in vacuum
and resulted as a linear generalized degree of freedom (i.e.,
it is defined by a single unit vector in configurational
space), as the proper reaction coordinate also in condensed
phase. The use of IRC for describing the proton transfer
kinetics, can be motivated by the rather high frequencies
found for the orthogonal internal motions in vacuo. This
means that also in condensed phase, where the perturbation
effect on high frequency vibrations is expected to be
weak,46 we may assume that the kinetic (classical)
relaxation along IRC occurs with all the other degrees
of freedomequilibrated, that is, the kinetics along IRCmay
be modeled as a diffusion along the free energy surface.
Note that, for a highly diluted solute, the reaction free
energy is independent of the solute roto-translational
coordinates38 and the solvent, provided an initial equi-
librium condition, is expected to relax instantaneously in
the ensemble of reactive trajectories at each reaction
coordinate position (see the Results and Discussion
section). However, it must be remarked that for a light
particle like a proton, a purely classical diffusion onto the
reaction free energy surface could be not sufficient to
describe the complete kinetics of the process, where
tunnelingeffectsmightbepresent. In thispaperwedisregard
suchquantumeffects andhence themodelusedprovides the
reaction freeenergysurface and thecorrespondingdiffusion
process, as obtained by PMM and (classical) molecular
dynamics (MD) simulations.

Defining with rn the nuclear coordinates of the
quantum center (QC) (i.e., the system treated quantum
mechanically) and r the coordinates of the atoms
providing the (classical) perturbing field we can write,
within certain approximations,32,34 the QC electronic
(perturbed) Hamiltonian matrix as

H̃ðrn; xÞ ffi H̃
0ðrnÞ þ qTVðr0; xÞĨþ Z̃1ðEðr0; xÞ; rnÞ

þ DVðrn; xÞĨ (1)

where H̃
0ðrnÞ is the unperturbed Hamiltonian matrix

which can be constructed carrying out standard electronic
structure calculations on the isolated QC, Vðr0; xÞ and
Eðr0; xÞ are the (perturbing) electric potential and electric
J. Phys. Org. Chem. 2006; 19: 518–530
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field at a given QC r0 position (typically the geometrical
center), Z̃1ðE; rnÞ is a perturbation matrix explicitly
given by ½Z̃1�l;l0 ¼ �E � F0

l m̂mjF0
l0

�� �
;

�
where m̂m is the

electric dipole operator. In the above equation DV ðrn; xÞ
approximates the perturbation due to all the higher order
terms as a simple short range potential and qT is the QC
total charge. Moreover, F0

l are the unperturbed
(electronic) Hamiltonian eigenfunctions and all the
matrices used are expressed in this unperturbed basis
set. At each MD frame, the electric potential and field
exerted by the environment can be simply evaluated
(typically using the environment atomic charge distri-
bution) and the perturbed Hamiltonian matrix constructed
and diagonalized. Hence, a trajectory of the QC perturbed
eigenvalues and eigenvectors is obtained. Such calcu-
lations carried out along the reaction coordinate provide,
within certain approximations and for a highly diluted
QC,38 the reaction free energy and whatever electronic
property at a generic reaction coordinate position h.
According to the theoretical model described in the
previous paper,38 the (Helmholtz) free energy change for
the reaction coordinate transition hR ! h (providing the
reaction standard chemical potential Dm� as in our
calculation the solute density is invariant along the
transition) and the average value of an electronic property
x at the position h, are

DAðhÞ ¼ Dm�ðhÞ ffi �kT ln e�bDð"0þqTVÞ
D E0

hR
(2)

xðhÞh i ffi
e�bDð"0þqTVÞxðhÞ
� �0

hR

e�bDð"0þqTVÞh i0hR
(3)

In the previous equations "0 is the (ground state)
eigenvalue of H̃

0 þ Z̃1 and Dð"0 þ qTVÞ provides the
energy change, for each MD frame, due to the transition
along the reaction coordinate and obtained energy
minimizing the QC internal quantum degrees of freedom.
Moreover, the subscript hR and the zero superscript mean
that the averages are performed in the statistical ensemble
with constrained reaction coordinate (at the reactant
structure position hR) and QC rototranslational motions,
where the system (a single QC and thewater molecules) is
in its vibrational ground state. The previous expressions
are correct within the approximation that a small reactant
to product displacement along the reaction coordinate,
does not affect the quantum vibrations and (classical)
mass tensor determinant.38 Moreover, as malonaldehyde
is a rather rigid molecule we may consider that, for each
solvent configuration, Dð"0 þ qTVÞ is a function only of
the reaction coordinate, that is, it is independent of the
other QC internal coordinates, and hence only the
structures along the minimum energy path (obtained in
vacuo) are necessary to provide the unperturbed proper-
ties for PMM calculations along IRC.38 In the special case
we deal with an isolated QC the previous expression for
the reaction free energy reduces to the unperturbed QC
Copyright # 2006 John Wiley & Sons, Ltd.
electronic ground state energy variation obtained by the
unperturbed Hamiltonian matrix H̃

0
evaluated along the

reaction coordinate.
In this paper, where we consider all the QC internal

coordinates orthogonal to IRC as harmonic (quantum)
degrees of freedom and the proton transfer is defined by a
relatively large IRC transition, it may beworth to evaluate
the correction term providing the free energy change at h,
due to the possible variation of the vibrational energies
and (classical) mass tensor determinant from the
corresponding values at hR. Assuming, as usual, the
partition function as factorized into a semi-classical part
and a quantum vibrational one (given by the product of
the molecular vibrational partition functions) and con-
sidering rigid solvent molecules (water) with hence a
coordinate independent classical mass tensor, we may
express such a free energy term DAIðhÞ as38,40

DAIðhÞ ffi

� kT ln
Qv;h

R
e�bFðx;hÞþDun;0ðx;hÞ� det M̃ðhÞ

� �1=2dx
Qn;hR

R
e�b Fðx;hÞþDun;0ðx;hRÞ½ � det M̃ðhRÞ

� �1=2dx
(4)

where Qn;h, Qn;hR are the QC molecular quantum
vibrational partition functions including all the orthogonal
internal degrees of freedom, obtained at h and hR,
respectively, and x are the solvent (classical) coordinates.
Moreover, M̃ðhÞ and M̃ðhRÞ are themass tensors associated
to all the QC classical coordinates (i.e., rototranslational
and IRC coordinates) as obtained at h and hR, F is the
(classical) potential energy of the system (QC plus
environment), and Duv;0 is the system vibrational ground
state energy shift from a reference value,38,40 due to the
solvent interaction and typically negligible. In malonalde-
hyde all the internal coordinates orthogonal to IRC are
characterized by rather high frequencies and hence are
considered as quantum degrees of freedom, classically
equivalent to constrained coordinates, described by the
vibrational partition function. Therefore, in Eqn (4) no
integration over QC classical coordinates is present. Note
also that the use of the QC complete classical mass tensor
determinant implies that, as required in Eqn (4), we deal
with the unconstrained ensemble.38 Using the approxi-
mation Duv;0ðx; hÞ ffi Duv;0ðx; hRÞ we then obtain, for the
perturbed (solvated) or isolated QC,

DAIðhÞ ffi �kT ln
Qn;h

Qn;hR

� kT

2
ln

det M̃ðhÞ
det M̃ðhRÞ

(5)

providing

DAðhÞ ¼ Dm�ðhÞ ffi �kT ln e�bDð"0þqTVÞ
D E0

hR

� kT ln
Qn;h

Qn;hR

� kT

2
ln

det M̃ðhÞ
det M̃ðhRÞ

(6)

where the QC vibrational partition function along the
reaction coordinate can be in general obtained via the
corresponding in vacuo frequencies, that is, we consider
J. Phys. Org. Chem. 2006; 19: 518–530



INTRAMOLECULAR PROTON TRANSFER IN AQUEOUS MALONALDEHYDE 521
the unperturbed frequencies as the reference frequencies
used in the definition of the vibrational partition
function.38,40 Note that within the approximations used
to obtainDAI, no corrections are needed for the x average.
We can obtain further useful relations expressing the
reaction free energy via the excess (Helmholtz) free
energy A0 ¼A�Aref (Aref is the free energy of a proper
reference condition40 defined at the same temperature and
density of the actual system but with Fþ Duv;0 ¼ 0)

DAðhÞ ¼ A0ðhÞ � A0ðhRÞ þ ArefðhÞ � ArefðhRÞ (7)

A0ðhÞ ¼ kT ln ebu
0ðx;hÞ

D E
� kT ln "h (8)

A0ðhRÞ ¼ kT ln ebu
0ðx;hRÞ

D E
� kT ln "hR (9)

ArefðhÞ � ArefðhRÞ

¼ �kT ln
Qn;h

Qn;hR

� kT

2
ln

det M̃ðhÞ
det M̃ðhRÞ

(10)

u0ðx; h0Þ ¼ Fðx; h0Þ þ Dun;0ðx; h0Þ (11)

where the averages are defined in the fixed h and hR
(unconstrained) vibrational ground state ensembles40 and
"h, "hR are the corresponding confinement fractions as
defined in the QGE theory. Using DA0ðhÞ ¼ A0ðhÞ
�A0ðhRÞ, Eqns (6), (7), and (10) we then have

DA0ðhÞ ¼ Dm0ðhÞ ffi �kT ln e�bDð"0þqTVÞ
D E0

hR
(12)

Dm0ðhÞ ¼ m0ðhÞ � m0ðhRÞ (13)

where the excess chemical potential m0 can be expressed
by the QGE Gamma state model which proved to be very
accurate for solute-solvent systems40

m0 ¼ u00 � T0c
0
V0
LðTÞ � kT ln "þ p0v

LðTÞ ¼ 1

d0
þ T

T0d
2
0

ln
T 1� d0ð Þ

T 1� d0ð Þ þ T0d0

� �
(14)

with u00; c
0
V0

the solute partial molecular excess internal
energy and heat capacity at the reference temperature T0,
d0 a temperature-independent intensive property that like
the excess pressure p0 is defined only by the solvent, k ln "
the solute partial molecular confinement entropy and v the
solute partial molecular volume. For a chemical reaction
like malonaldehyde proton transfer wemay safely assume
that both k ln " and v are independent of the IRC position
and hence
Copyright # 2006 John Wiley & Sons, Ltd.
Dm�ðhÞ ffi Du00ðhÞ � T0Dc
0
V0
ðhÞLðTÞ

� kT ln
Qn;h

Qn;hR

� kT

2
ln

det M̃ðhÞ
det M̃ðhRÞ

(15)

Du00ðhÞ ¼ u00ðhÞ � u00ðhRÞ

Dc0V0
ðhÞ ¼ c0V0

ðhÞ � c0V0
ðhRÞ

These last equations were used to obtain the complete
reaction thermodynamics. Finally, using the reaction free
energy profile and the diffusion coefficientD of the reaction
coordinate (if available), it is possible to obtain the reaction
(classical) kinetics by solving a diffusion equation47 in the
reaction coordinate space (see Appendix 2)

@r

@t

� 	
h

¼ D

kT
r

@2Dm�

@h2

� 	
t

þ @Dm�

@h

� 	
t

@r

@h

� 	
t

� �

þ D
@2r

@h2

� 	
t

(16)

where r t; hð Þ is the probability density in h and we
assumed @D=@t; @D=@h ffi 0.

QUANTUM CHEMICAL CALCULATIONS
AND MOLECULAR DYNAMICS
SIMULATIONS

All the quantum chemical calculations on the isolated
malonaldehyde, that is our quantum center, were carried
out by the Gaussian 98 package.53 We have initially
determined the essential features of the potential energy
hypersurface characterizing the reaction I in vacuo,
namely the potential energy minima (1a, 1b) and the
interconnecting first order saddle point (1c). In order to
obtain the corresponding energies, we used Density
Functional Theory (DFT) employing the Becke’s three
parameters48 exchange and the Lee, Yang and Parr49

correlation functionals (B3LYP) in conjunction with the
6-311þþG(p,d) atomic basis set.50 The above calcu-
lations have been also repeated using the second order
perturbation theory, that is, MP2 (full) level of theory, with
the same atomic basis set. Coupled cluster theory including
single, double and a perturbative estimate of triple
excitations, that is, CCSD(T),51 was finally applied to
the B3LYP/6-311þþG(p,d) geometries to improve
the quality of the energies of the minima and transition
structures. These latter calculations are hereafter denoted
as CCSD(T)/6-311þþG(p,d)//B3LYP/6-311þþG(p,d).
The minimum energy path of reaction I was studied at
the CCSD(T)/6-311þþG(p,d)//B3LYP/6-311þþG(p,d)
level of theory by means of the Intrinsic Reaction
Coordinate starting from the previously located transition
structure 1c and moving toward both minima la and 1b.
For each point along IRC we also evaluated the B3LYP/6-
311þþG(p,d) mass-weighted Hessian matrix corre-
sponding to the internal degrees of freedom orthogonal
J. Phys. Org. Chem. 2006; 19: 518–530



522 M. ASCHI ET AL.
to the reaction coordinates, that is, without including the
reaction coordinate,43 which provided the reference
frequencies to be used in the vibrational partition
function. In order to apply PMM at each structure of
this path, the electronic ground and excited energies as
well as the corresponding (transition) dipoles, were
obtained at two levels of theory: Configuration Interaction
with Single (electron) excitations (CIS) with 6-
311þþG(p,d) atomic basis set, and Time Dependent
Density Functional Theory (TD-DFT)52 with B3LYP
functional and the same atomic basis set. Both procedures
provided virtually identical results and hence for PMM
calculations presented here we utilized TD-DFT data.
Note that in correspondence of each point of the IRC grid,
that is, the QC structures along the reaction coordinate,
ten states (i.e., the ground plus nine excited states) were
optimized for the unperturbed QC, both at CIS and TD-
DFT levels of theory. Such unperturbed Hamiltonian
eigenstates defined the basis set used to construct the
perturbed Hamiltonian matrix, Eqn (1), which was then
diagonalized at each simulation frame, leading to the
reaction free energy and related properties.

To evaluate the reaction free energy surface in solution
MD simulations were performed over a wide temperature
range (280–1200 K), constraining the reactant malonal-
dehyde (essentially the la structure) in the center of the
simulation box, filled with 256 simple point charge
(SPC)54 water molecules, at the typical liquid density
(55.32mol/L). The parameters describing the reactant
malonaldehyde force field were determined as follows:
the charges were recalculated adopting several fitting
procedures55 and different levels of theory, namely DFT
and MP2, to ascertain the stability of the results; for the
other non-bonding and all the bonding interactions,
inspired by previous articles on similar systems,26 we
used the parameters contained in the Gromos force field59

designed for similar atoms. Note that within the force
field used the overall energy minimum, if removing the
interaction with the solvent, is defined by the 1a structure
(the minimum energy reactant geometry as obtained by
the quantum chemical calculations in vacuum). Finally,
malonaldehyde bond lengths were constrained by
LINCS60 and the rototranslational constraints61 were
used to keep the molecule rototranslationally fixed at the
center of the simulation box. Such a constrained
simulation procedure, providing the correct statistical
mechanics and thermodynamics of a semi-rigid mol-
ecule61 like malonaldehyde, is computationally con-
venient and allows a simple PMM application. Moreover,
it is consistent with the physical model involved in Eqns
(2) and (3): a rigid molecule with constrained rototransla-
tional degrees of freedom. The choice of treating in the
MD simulation the angular QC internal coordinates as
stiff classical harmonic degrees of freedom instead of
constrained ones, with hence the reaction coordinate also
not exactly constrained at the reactant position, is
motivated by the faster solvent relaxation occurring
Copyright # 2006 John Wiley & Sons, Ltd.
when the angular internal coordinates have some
vibrational freedom. Such tiny angular and IRC
fluctuations are negligible for the (equilibrium) statistical
mechanical solvent behavior and hence the perturbing
field distribution, as obtained by the MD simulation and
used in PMM calculations, is virtually identical to the one
obtained by a simulation with a fully constrained
malonaldehyde. The temperature was kept constant using
the isokinetic temperature coupling62 to obtain results
fully consistent with statistical mechanics.61,63 For all the
simulations the number of steps was 3 000 000 with three
different time steps: 2 fs for simulations in the range 280–
450K, 1 fs in the range 450–800K, and 0.5 fs in the range
800–1200K. The long range electrostatics was calculated
using the Particle Mesh Ewald (PME) method,56 with 34
wave vectors in each dimension and a 4th order cubic
interpolation. All the simulations were performed using
the Gromacs package.57–59

To explicitly evaluate the (classical) kinetics of the
proton transfer (provided by the diffusion along
the reaction free energy surface), we first evaluated the
diffusion coefficient associated to the IRC in the solvated
reactant malonaldehyde. For this purpose we performed
(by Gromacs) a 110 ps MD trajectory at constant energy
(i.e., with no temperature coupling) of solvated reactant
malonaldehyde, utilizing unconstrained bond lengths
(with the corresponding Gromacs stretching parameters)
and thus a reduced time step of 0.1 fs, starting from a MD
frame of a similar simulation at 300K (i.e., with the
isokinetic temperature coupling), chosen so that its total
energy was virtually identical to the value obtained by
averaging over the 300K simulation. For the rest, these
simulations were performed identically to the previous
ones. Note that in both simulations the first 10 ps were
considered as equilibration and hence removed from the
analysis. Finally, projecting a large number of the
(constant energy) trajectory subparts starting close to
the IRC free energy minimum (the reactant position hR)
onto the unit vector defining the reaction coordinate, we
evaluated the diffusion coefficient of IRC via the
corresponding computed mean square displacement in
time. Note that for a fast velocity autocorrelation function
relaxation, as in the present case where the diffusive
regime is achieved within 1 fs, the use of a constant
energy simulation to evaluate the diffusion coefficient is
physically more consistent than using a constant
temperature one. The obtained diffusion coefficient was
then utilized to solve (numerically) the diffusion equation
(note that we assume an IRC independent diffusion
coefficient which then may be obtained considering only
the reactant ensemble). The use of unconstrained internal
coordinates, described in the last simulations by stiff
classical harmonic vibrations around the la structure, is
motivated by the need of evaluating the average
dynamical behavior of the reaction coordinate via a
purely classical model. For this purpose, to describe the
possible dynamical coupling between internal coordinates,
J. Phys. Org. Chem. 2006; 19: 518–530



Table 1. Proton transer barrier heights (kJ/mol) for malo-
naldehyde-(H2O)n, complexes (n¼0, 1, 2), in vacuum, cal-
culated at the B3LYP/6-311þþG(d,p) (DFT), MP2/6311þþ
G(d,p) (MP2) and CCSD(T)/6-311þþG(d,p)//B3LYP/6-311
þþG(d,p) (CC) levels of theory

Method n¼ 0 n¼ 1 n¼ 2

DFT 13.4 22.5 75.1
MP2 13.6
CC 18.1
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we were forced to utilize classical vibrations with proper
frequencies, that is, similar to the ab initio ones, and
remove the constraints used for the statistical mechanical
derivations where no dynamical information was
required. Note that rototranslational motions can be
considered as fully (dynamically) decoupled from IRC
diffusion because of the extremely fast velocity auto-
correlation function relaxation, and hence the use of the
corresponding constraints in the simulation should have
no effect on evaluating the diffusion coefficient.
RESULTS AND DISCUSSION

Malonaldehyde is a rather rigid molecule with a high
energy dihedral barrier (about 65 kJ/mol or more in
vacuum, at CCSD(T)).

To ascertain the reliability of choosing as QC the
uncomplexed malonaldehyde, we systematically com-
pared in vacuum the potential energy (i.e., the electronic
ground state energy) profiles of reaction I considering
some small but suitable la–water complexes (i.e., we
tested possible reaction paths involving water proton
exchange). In Table 1 we report the energy barrier heights
for the proton transfer in such malonaldehyde–water
complexes at different levels of theory. The reaction in
vacuum, with no water molecules involved, presents a
B3LYP barrier of 13.6 kJ/mol. At the CCSD(T)/6-
311þþG(p,d)//B3LYP/6311þþG(p,d) level the value
of the barrier is increased up to 18.1 kJ/mol in very good
agreement with literature computational and experimen-
tal results.2,17 Remarkably the B3LYP barriers obtained
Figure 1. Atomic components (see text) of the unit vector defin

Copyright # 2006 John Wiley & Sons, Ltd.
for all the complexes with water, result as invariably
higher. Assuming a systematic underestimation of the
B3LYP energy barriers with respect to the more
computationally demanding CCSD(T)/6-311þþG(p,d),
þG(p,d), such a result suggests that no water proton
exchange is involved in malonaldehyde intramolecular
proton transfer and, hence, that the uncomplexed
malonaldehyde may provide a proper QC for PMM
calculations. Interestingly, as mentioned in the previous
sections, IRC is linear and hence defined by a single
unit vector in configurational space. In Fig. 1 we show
the atomic components of such unit vector, given by the
square root of the sum of the corresponding x,y,z square
components. Using the unit vector components and
the atomic masses it is also possible to evaluate the mass
associated to the reaction coordinate (i.e., the mass tensor
diagonal element corresponding to IRC), which resulted
of 3.1 a.u. The reaction free energy in solution along the
IRC was obtained via PMM calculations based on the
B3LYP procedure which in vacuum provided an under-
estimated energy barrier. Hence, assuming that at each h
ing the IRC

J. Phys. Org. Chem. 2006; 19: 518–530



524 M. ASCHI ET AL.
value the PMM/B3LYP reaction free energy subtracted of
the corresponding (B3LYP) unperturbed contribution
provides a more accurate evaluation, we obtained the
(solution) reaction free energy surface adding such shifts
to the CCSD(T) vacuum free energy surface. Note that the
vibrational partition functions were obtained by the
B3LYP vacuum frequencies and DAIðhÞ resulted irrele-
vant in the whole IRC range considered. In Fig. 2 we
report the perturbed free energy surface, as obtained by
PMM and the MD simulation at 300K, together with the
CCSD(T) vacuum free energy profile and the 300K
reaction free energy as obtained by PCM using the same
procedure and level of quantum chemical calculations
(i.e., adding the PCM/B3LYP free energy shifts to the
CCSD(T) curve). It is evident from PMM results that the
solvent provides a free energy barrier (activation free
energy) of about 2 kJ/mol lower than the vacuum one.
Such a result, indicating a transition state (TS) solvation
free energy larger than the reactant-product one, is
expected from the (gas-phase) larger TS dipole moment.
Note that this finding, valid for cis malonaldehyde proton
transfer, does not necessarily apply to the overall proton
transfer reaction, including the cis–trans equilibrium
because of the relative thermodynamic instability of the
cis isomer. PCM reaction free energy profile, although
showing a similar shape to the PMM curve, presents a free
energy barrier slightly higher than the vacuum one and
predicts a local minimum in correspondence of the
vacuum transition structure. Such an unphysical con-
dition is probably due to the macroscopic dielectric
igure 2. Reaction free energy surfaces as provided by PMM and the MD simulation at 300K (solid line), CCSD(T) (vacuum)
alculations (dotted line) and 300K PCM calculations (dashed line)

F
c

Copyright # 2006 John Wiley & Sons, Ltd.
polarization used in PCM to model solute-solvent
interaction, which may be rather unrealistic as previously
reported.34,37 A further intriguing aspect, emerging by our
model, is the fact that the free energy surface is only
slightly affected when temperature is increased from
300K to 1200K, thus indicating a very limited entropic
contribution to the reaction free energy. This is shown in
Fig. 3 where we report the (PMM) activation free energy
Dm�ðhTSÞ as a function of the temperature. In Fig. 3 we
also show the curve obtained by using the QGE theory40

to model PMM reaction free energy according to Eqn
(15). The QGE model, accurately reproducing the PMM
free energy barriers, provides also the corresponding
activation entropy curve Ds�ðhTSÞ, resulting in the whole
temperature range between �1.3 and �0.2 J/(molK) (see
Fig. 3). Such small activation entropies indicate that no
relevant solvent reorganization is present in the proton
transfer, although the transition structure is always
associated to a lower entropy. Interestingly, the free
energy maximum position along the reaction coordinate
is also virtually independent of the temperature, and
hence it is always associated to the same molecular
structure (data not shown).

To obtain the kinetics of the proton transfer reaction in
aqueous malonaldehyde, within the classical view of the
diffusion along the reaction free energy surface, we first
evaluated the reaction coordinate diffusion coefficient, for
a kinetic process occurring in water at 300K (see previous
section). In Fig. 4 we show the IRC mean square
displacement (MSD) in time, as obtained by the constant
J. Phys. Org. Chem. 2006; 19: 518–530



Figure 4. Mean square displacement (MSD) along the IRC as provided by the constant energy simulation of malonaldehyde in
water (see Methods), used to obtain the reaction coordinate diffusion coefficient. No error bars are reported as the estimated
noise is too small to be visible on the figure scale. In the inset we show the time range used to obtain the diffusion coefficient by
fitting MSD data by a linear regression

Figure 3. Activation free energy and entropy as provided by the QGEmodel (solid lines) and activation free energy obtained by
PMM/MD results (circles) as a function of temperature

Copyright # 2006 John Wiley & Sons, Ltd. J. Phys. Org. Chem. 2006; 19: 518–530
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energy simulation, providing D¼ 4.1� 10�3�
10�4 nm2/ps (the noise indicated is the error upper limit).
It is also interesting to note that the diffusive regime is
accessed within 1 fs, indicating that the velocity auto-
correlation function relaxation is extremely fast (in the
inset we show the time range used to obtain the diffusion
coefficient by fittingMSD data by a linear regression). By
using such a diffusion coefficient and the (300K)
perturbed reaction free energy into the diffusion equation
(DE), see Theory section, we could obtain the detailed
time course of the proton transfer reaction from the
reactant to the product state. In Fig. 5 we show
the probability profile, along h, as provided by the
(numerical) DE solution at three different times. In order
to schematize the kinetic process, we used three chemical
states according to Fig. 2: the transition state (TS), defined
by a 0.01 nm IRC interval centered on the free energy
maximum, the reactant (R), defined by the IRC range at
left of the TS, and the product (P) defined by the IRC
range at right of the TS. Hence, within such a scheme the
complete reaction can be described by the time
dependence of these three chemical state probabilities.
In Fig. 6 we show the time courses of the three
probabilities as obtained by the DE solution. R, and P
probabilities converge to their equilibrium values within
120–150 ps, clearly indicating a rather fast kinetics. From
the figure it is also clear that the TS reaches a stationary
condition within to¼ 300 fs, providing in the following
time range a completely symmetric reactant and product
kinetics (i.e., identical relaxation rates and final equi-
librium values), as expected by the free energy symmetric
shape. Interestingly, the R and P relaxations, when
subtracted of the equilibrium value, are perfectly
igure 5. Probability distributions along IRC at three different times, as obtained by solving the diffusion equation
F
Copyright # 2006 John Wiley & Sons, Ltd.
exponential (beyond t0) for virtually the complete
reaction time course with a rate constant K¼ 0.038�
0.001 ps�1 corresponding to the mean life ti 26 ps (the
noise indicated is the error upper limit). Note that a
different definition of the three states using short intervals
(0.014 Å) centered on the two free energy minima (R and
P states) and on the free energy maximum (TS state),
provided a virtually identical rate constant and kinetic
behavior. Remarkably, the obtained rate constant is well
matching the experimentally observed kinetics of this
reaction in solution10,11 (picoseconds range in CFC13/
CD2C12) and suggests that tunneling might be not
relevant in liquid phase conditions, as also indicated by
the theoretical-computational estimate of the tunneling
rate in liquid water26 (nanoseconds range). Such a result,
obtained in condensed phase, is also in agreement with
the data obtained in a previous computational attempt to
investigate malonaldehyde proton transfer in vacuum,25

leading to similar conclusions for the gas phase reaction.
It is also interesting to note that the use of standard
Transition State Theory with unitary transmission
coefficient provides a lower value of the rate constant
(mean life of about 100 ps), showing that a more general
kinetic model should be used to rationalize the DE results.
On the basis of the results obtained by DE solution (Figs.
5 and 6) we may define (in strong analogy with Eyring
approach) the R, P, and TS chemical states and the general
reaction scheme
R �!k1 TS �!k�2
P (17)

P �!k2 TS �!k�1
R (18)
J. Phys. Org. Chem. 2006; 19: 518–530



Figure 7. Mean square displacement (MSD) of the perturb-
ing electric field, as obtained by the 300K simulation. The
error bars shown correspond to a standard deviation of the
MSD

Figure 6. Time course of the reactant (solid line), product (dotted line) and transition state (inset) probabilities as obtained by
solving the diffusion equation
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Considering symmetric rate constants (due to the
symmetric reaction free energy), that is

k1 ¼ k2 ¼ kþ

k�1 ¼ k�2 ¼ k�

we obtain for t � t0 (see the Appendix 1)

PRðtÞ � PRð1Þ
PRðt0Þ � PRð1Þ ffi e�Kðt�t0Þ (19)

PPðtÞ � PPð1Þ
PRðt0Þ � PRð1Þ ffi �e�Kðt�t0Þ (20)

PTSðtÞ ffi PTSð1Þ ¼ kþ
2k� þ kþ

K ¼ 2kþk� þ k2þ
2k� þ kþ

¼ kþ

where PR, PP, PTS are the probabilities for R, P, and TS,
respectively. Note that such a steady state model, based on
the assumption _PTS ffi 0 and matching perfectly the DE
results in the t� t0 range, is rather different from the
Eyring model which assumes a pre-equilibrium between
the R and TS species, considering only the R!P reaction
(see the Appendix 1). Using the equilibrium TS
probability as well as the kþ¼K rate constant, we may
also evaluate the inverse reaction constant k�¼ 23.4�

Copyright # 2006 John Wiley & Sons, Ltd.
0.6 ps�1 corresponding t0 a mean life of about 43 fs (the
noise indicated is the error upper limit).

Finally, in order to check the accuracy of our basic
assumption that the IRC can be used as a single reaction
coordinate to describe the proton transfer kinetics, we can
monitor the perturbing electric field relaxation. In Fig. 7
J. Phys. Org. Chem. 2006; 19: 518–530
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we show the mean square displacement in time of the
perturbing field (defined in the malonaldehyde reference
frame summing the MSD of each component), as
obtained by the 300K simulation considering a set of
subtrajectories starting in the probability maximum of the
field, that is, the free energy minimum in the field space.
From the figure it is evident that the perturbation is fully
relaxed within 20–30 fs, indeed showing that the solvent
can be considered as instantaneously relaxed along the
IRC transition occurring, as found by our model, within
several tens of picoseconds.
CONCLUSIONS

In this paper we utilized the very recently introduced
theoretical modeling of the reaction thermodynamics in
complex systems,38 to treat the intramolecular proton
transfer of aqueous malonaldehyde. Comparison between
solution (PMM) and vacuum reaction free energy profiles
clearly shows that water acts as a ‘catalyzator’’ of the
reaction, lowering the free energy barrier. Such a result is
not a simple dielectric effect as PCM calculations provide
essentially the same free energy barrier of the vacuum
curve. Interestingly the solution reaction free energy
surface, as obtained by PMM and MD simulations, shows
a weak temperature dependence and the QGE model,
constructed to describe the complete reaction thermo-
dynamics, clearly indicates that no large entropic
variations are involved in the proton transfer process
although an entropy reduction is present in correspon-
dence of the transition structure (negative activation
entropy). The reaction free energy surface and the
estimated diffusion coefficient along IRCwere used in the
diffusion equation to provide the complete (classical)
kinetics of the reaction. The accuracy of such a theoretical
evaluation of the kinetics, based on the assumption that all
the degrees of freedom orthogonal to the reaction
coordinate are instantaneously relaxed during the IRC
transition, has been checked by evaluating the relaxation
rate of the perturbing electric field, resulting more than
1000 times faster than the IRC transition rate as obtained
by the model itself. In fact the obtained proton transfer
kinetics, providing a transition rate constant of
0.038 ps�1, fits well the experimentally estimated
picoseconds range transition mean time in CFC13/
CD2C12 solution,10,11 that is, the only available exper-
imental data on the reaction in condensed phase found in
literature. This result, when considering the much larger
tunneling mean life in aqueous solution as provided by
theoretical-computational data,26 suggests that tunneling
could be kinetically not relevant in condensed phase, as
also reported for the gas-phase reaction.25 Finally, our
data show that Eyring theory is inaccurate in the present
case and a more general chemical kinetic model must be
used to rationalize the diffusion equation results (see
Appendix 1).
Copyright # 2006 John Wiley & Sons, Ltd.
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APPENDIX 1

Consider the general reaction scheme for the three chemi-
cal states R, P and TS

R �!k1 TS �!k�2
P (21)

P �!k2 TS �!k�1
R (22)

and the stationary condition

_PTS ¼ k1PR � k�1PTS þ k2PP � k�2PTS ffi 0 (23)

PTS ffi
k1PR þ k2PP

k�1 þ k�2

(24)

valid for t� t0 (t0 is the time interval required to achieve
the steady state). From the relation 1 ¼ PRð0Þ ¼ PRðtÞ þ
PPðtÞ þ PTSðtÞ we have PPðtÞ ¼ 1� PRðtÞ � PTSðtÞ and
hence 8t� t0

PTSðtÞ ffi
k1 � k2ð ÞPR þ k2

k�1 þ k�2 þ k2
(25)

_PR ffi �KPR þ K 0 (26)

K ¼ k1k�2 þ k1k2 þ k2k�1

k�1 þ k�2 þ k2
(27)

K 0 ¼ k2k�1

k�1 þ k�2 þ k2
(28)

The general solution of the previous ordinary linear
differential equation is, in the time range t� t0,

PRðtÞ ffi PRð1Þ þ ½PRðt0Þ � PRð1Þ�e�Kðt�t0Þ (29)

PRð1Þ ¼ K 0

K
¼ k2k�1

k1k�2 þ k1k2 þ k2k�1

From the last expressions we readily obtain (using
again PPðtÞ ¼ 1� PRðtÞ � PTSðtÞ and the stationary
J. Phys. Org. Chem. 2006; 19: 518–530
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condition)

PPðtÞ ffi PPð1Þ � k�1 þ k�2 þ k1

k�1 þ k�2 þ k2

þ ½PRðt0Þ � PRð1Þ�e�Kðt�t0Þ (30)

PPð1Þ ¼ k�1 þ k�2 � k�1 þ k�2 þ k1ð ÞPRð1Þ
k�1 þ k�2 þ k2

¼ k1k�2

k1k�2 þ k1k2 þ k2k�1

PTSðtÞ ffi PTSð1Þ

þ k1 � k2

k�1 þ k�2 þ k2
PRðt0Þ � PRð1Þ½ �e�Kðt�t0Þ

(31)

PTSð1Þ ¼ k1 � k2ð ÞPRð1Þ þ k2

k�1 þ k�2 þ k2

¼ k1k2

k1k�2 þ k1k2 þ k2k�1

When in the PR, Pp, PTS expressions we use symmetric
rate constants, that is, k1 ¼ k2 ¼ kþ; k�1 ¼ k�2 ¼ k�, we
obtain the relations, given in the Results and Discussion
section, valid for the aqueous malonaldehyde proton
transfer. It is also instructive to consider other two special
cases of this general model. If we deal with a reaction
where k2 ffi 0 then we have K ffi k1k�2=ðk�1 þ k�2Þ
and

PTS

PR

ffi k1

k�1 þ k�2

(32)

corresponding to a simple steady state for the R!P
reaction alone. This case is typical in systems where
the free energy of the product is much lower than the
reactant one or the product is instantaneously
removed in some way (e.g., in enzymatic reactions).
When k2; k�2 ffi 0 we obtain a further condition with
K ffi k1k�2=k�1 and PTS=PR ffi k1=k�1 which clearly
corresponds to a pre-equilibrium between the R and
TS species, as required by the Eyring theory.
However, this last case is rather unusual as k�2 is
typically larger or of the same order of k�1 when
k1	 k2, and hence Eyring theory should not be used
as a general model to describe chemical reactions.

APPENDIX 2

In this appendix we show, in a simple and direct way, how
to obtain the diffusion equation used in this paper.

‘Consider, in general, a set of reaction coordinates h
providing the kinetic relaxation of the system, that is, all
the other degrees of freedom are assumed to be fully
equilibrated along the h relaxation. The equations of
motion for the h degrees of freedom when averaging
over the ensemble defined by the solute molecules within
Copyright # 2006 John Wiley & Sons, Ltd.
a tiny h volume (equivalent to a numerical differential),
can be approximated as

_ph hð Þ
� �

ffi F hð Þ � ~G t; hð Þ ph hð Þ
� �

ð33Þ

ph hð Þ
� �

¼ ~Mh;h hð Þ _h hð Þh i ð34Þ
where ph are the h conjugated momenta, F is the sys-
tematic, that is, equivalent to an external field, force in the
space and ~G, ~Mh;h are the friction matrix and solute
(classical) mass tensor block corresponding to the h
coordinates. We assumed a virtually fixed solute mass
tensor for a given h position and hence ~Mh;h provides the
only non zero terms of ph after averaging, as the other
degrees of freedom are considered as fully equilibrated
with hence zero mean velocities. Within the approxi-
mation given by the previous equations, the work due
to the systematic force only should coincide with the
maximum work along the transition, that is, the work
obtained for a reversible transition with then _hh i ¼ 0.
Hence, for a molecule passing from a tiny volume cen-
tered at ha to another one centered at hb we can write

DA nð Þ ¼ @A

@nhb

� 	
þ @A

@nha

� 	
@nha
@nhb

� 	

¼ m nhb ; hb

 �

� m nha; ha

 �

¼ �
ðhb
ha

F hð Þ � dh

ð35Þ
providing 
 �
F hð Þ ¼ �rhm nh; h ð36Þ

In the last equations Aðn) is the Helmholtz free energy
of the total NVT system fully defined by the vector
n ¼ nh1 ; nh2 ; . . . providing the solute molecular number
in each tiny volume andm nh; hð Þ is the chemical potential
at a given h position, that is, within the corresponding tiny
volume. Note that the molecular number can be used as a
continuous variable, given the fact that for any thermo-
dynamic property in a macroscopic system the variation
due to a single molecule is virtually equivalent to a
differential. From the definition of the chemical potential
and solute density in the h space r t; hð Þ, we readily have

m nh; h

 �

¼ Dm� nð Þ þ kT ln
nh

nhR
þ m nhR; hR


 �
ð37Þ

r t; hð Þ 
 �

¼ Dm�ðnÞ þ kT ln

r t; hRð Þ þ m nhR; hR

ð38Þ
which used together with _ph

� �
ffi 0 (the linear regime
condition) provides

_h hð Þh i ffi � ~G t; hð Þ ~Mh;h hð Þ
� ��1rhDm� nð Þ

� ~G t; hð Þ ~Mh;h hð Þ
� ��1

kT
rhr t; hð Þ
r t; hð Þ

ð39Þ
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Hence from the definition of the flux density vector
J hð Þ ¼ r t; hð Þ _h hð Þh i and setting

~D t; hð Þ ¼ kT ~G t; hð Þ ~Mh;h hð Þ
� ��1 ð40Þ

we obtain, via the divergence theorem,

@r

@t

� 	
h

¼ �rh � J ffi rh � ~D kTð Þ�1rrhDm� ~Drhr
h i

ð41Þ

This last equation, when considering a one dimensional

h space with then ~D ¼ D, provides the diffusion
equation used in this paper within the assumption
@D=@t; @D=@h ffi 0 (see theory section).’
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